16 research outputs found

    Multi mode Resonator based Concurrent Triple band Band pass Filter with Six Transmission Zeros for Defence Intelligent Transportation Systems Application

    Get PDF
    A compact and highly selective triple-band bandpass filter (BPF) is designed and presented in this paper. Proposed filter offers low insertion loss, and passband characteristics is achieved by using two coupled MMR multi-mode resonators (MMR1 and MMR2) and an inverted T and circular shape MMRs. The filter operates at frequency 2.43 GHz (Vehicular Communication), 5.91 GHz (ITS band), and 8.86 GHz (satellite communication band). The simulation and measurement results show a minimum insertion loss of 1.6 dB, 0.73 dB, and 2.8 dB for triple-band BPF. The return loss is found to be greater than 13.06 dB, 28.6 dB, and 21.55 dB. It is noted that measurement results are in accordance with the result of electromagnetic simulation. Desired triple-band multi-mode resonators (MMRs) filter characteristics are achieved with six transmission zeroes (TZs). The filter comprises of MMRs which provide small size and control over the spurious frequency. By using a parallel-coupled microstrip line, the first and third passbands are realised. Whereas by using an end-coupled microstrip line, the second passband is recognised. At the input and output ports, the resonator coupling technique is used. By using the anti-parallel microstrip line arrangement, the transmission zero is acquired. The dimensions of the designed filter are 25×16 mm 2

    A Defected Ground Structure Based Compact Circular Patch Antenna Design for mm Wave Application

    Get PDF
    This paper presents a novel defected ground structure-based slotted circular patch antenna for mm-Wave application. A circular patch antenna with a compact size of 10 mm×8 mm×0.75 mm is fabricated in the lab. The designed antenna has a 2 GHz impedance bandwidth that covers the frequency range of 42GHz to 44GHz. It achieves a directional radiation pattern for millimeter-wave applications and has a maximum realized gain of 6 dBi at the operating frequency of 42.65 GHz. Defected ground structure (DGS) is loaded on the bottom of the dielectric substrate, which improves the gain and reduces the surface wave propagation. The proposed antenna has achieved circular polarization which makes it suitable for the mm-Wave application

    Recent insights into the impact, fate and transport of cerium oxide nanoparticles in the plant-soil continuum

    No full text
    The advent of the nanotechnology era offers a unique opportunity for sustainable agriculture provided that the exposure and toxicity are adequately assessed and properly controlled. The global production and application of cerium oxide nanoparticles (CeO2-NPs) in various industrial sectors have tremendously increased. Most of the nanoparticles end up in water and soil where they interact with soil microorganisms and plants. Investigating the uptake, translocation and accumulation of CeO2-NPs is critical for its safe application in agriculture. Plant uptake of CeO2-NPs may lead to their accumulation in different plant tissues and interference with key metabolic processes of plants. Soil microbes can also be affected by increasing CeO2-NPs in soil, leading to changes in the physiology and enzymatic activity of soil microorganisms. The interactions between CeO2-NPs, microbes and plants in the agricultural system need systemic research in ecologically relevant conditions. In the present review, The uptake pathways and in-planta translocation of CeO2-NPs,and their impact on plant morphology, nutritional values, antioxidant enzymes and molecular determinants are presented. The role of CeO2-NPs in modifying soil microbial community in plant rhizosphere is also discussed. Overall, the review aims to provide a comprehensive account on the behaviour of CeO2-NPs in soil-plant systems and their potential impacts on the soil microbial community and plant health

    Nanoiron: Uptake, translocation and accumulation in plant systems

    No full text
    Nanoparticles (NPs) bear unique properties that leads to its immense application in diverse domains. But excessive use of metal oxide nanoparticles (MONPs) in various industrial sectors may lead to detrimental impacts on our environment in the near future. Among NPs, applications of nanoiron in various industrial sectors are gradually increasing and its interaction with the soil-plant system is an area still to be explored. In this review, we have focused upon positive as well as the negative impact of nanoiron in plants. As per available literature, it is evident that higher concentration of nanoiron causes oxidative stress while lower concentration leads to plant growth promotion. In addition to this, review also highlights the uptake, translocation and accumulation of nanoiron in plant system which subsequently leads to alterations in the morpho-physiological, biochemical and molecular traits of plants. Moreover, various factors contributing towards the translocation of nanoiron in shoot and root system of plants has been duly discussed

    Tolerance and Reduction of Chromium(VI) by Bacillus sp. MNU16 Isolated from Contaminated Coal Mining Soil

    No full text
    The bacterium MNU16 was isolated from contaminated soils of coal mine and subsequently screened for different plant growth promoting (PGP) activities. The isolate was further identified by 16S rRNA sequencing as Bacillus subtilis MNU16 with IAA concentration (56.95 ± 0.43 6μg/ml), siderophore unit (9.73 ± 2.05%), phosphate solubilization (285.13 ± 1.05 μg/ml) and ACC deaminase activity (116.79 ± 0.019 μmoles α-ketobutyrate/mg/24 h). Further, to evaluate the metal resistance profile of bacterium, the isolate was screened for multi-metal resistance (viz. 900 mg/L for Cr, 600 mg/L for As, 700 mg/L for Ni and 300 mg/L for Hg). Additionally, the resistance pattern of B. subtilis MNU16 against Cr(VI) (from 50 to 300 mg/L) treatments were evaluated. An enriched population was observed at 0–200 mg/L Cr(VI) concentration while slight reductions were observed at 250 and 300 mg/L Cr(VI). Further, the chromium reduction ability at 50 mg/L of Cr(VI) highlighted that the bacterium B. subtilis MNU16 reduced 75% of Cr(VI) to 13.23 mg/L within 72 h. The localization of electron dense precipitates was observed in the TEM images of B. subtilis MNU16 which is might be due to the reduction of Cr(VI) to Cr(III). The data of fluorescence microscopy and flow cytometry with respect to Cr(VI) treatments (50–300 mg/L) showed a similar pattern and clearly revealed the less toxic effect of hexavalent chromium upto 200 mg/L Cr(VI) concentration. However, toxicity effects were more pronounced at 300 mg/L Cr(VI). Therefore, the present study suggests that the plant growth promoting potential and resistance efficacy of B. subtilis MNU16 will go a long way in developing an effective bioremediation approach for Cr(VI) contaminated soils

    Differential Phytotoxic Impact of Plant Mediated Silver Nanoparticles (AgNPs) and Silver Nitrate (AgNO3) on Brassica sp.

    No full text
    Continuous formation and utilization of nanoparticles (NPs) have resulted into significant discharge of nanosized particles into the environment. NPs find applications in numerous products and agriculture sector, and gaining importance in recent years. In the present study, silver nanoparticles (AgNPs) were biosynthesized from silver nitrate (AgNO3) by green synthesis approach using Aloe vera extract. Mustard (Brassica sp.) seedlings were grown hydroponically and toxicity of both AgNP and AgNO3 (as ionic Ag+) was assessed at various concentrations (1 and 3 mM) by analyzing shoot and root length, fresh mass, protein content, photosynthetic pigments and performance, cell viability, oxidative damage, DNA degradation and enzyme activities. The results revealed that both AgNPs and AgNO3 declined growth of Brassica seedlings due to enhanced accumulation of AgNPs and AgNO3 that subsequently caused severe inhibition in photosynthesis. Further, the results showed that both AgNPs and AgNO3 induced oxidative stress as indicated by histochemical staining of superoxide radical and hydrogen peroxide that was manifested in terms of DNA degradation and cell death. Activities of antioxidants, i.e., ascorbate peroxidase (APX) and catalase (CAT) were inhibited by AgNPs and AgNO3. Interestingly, damaging impact of AgNPs was lesser than AgNO3 on Brassica seedlings which was due to lesser accumulation of AgNPs and better activities of APX and CAT, which resulted in lesser oxidative stress, DNA degradation and cell death. The results of the present study showed differential impact of AgNPs and AgNO3 on Brassica seedlings, their mode of action, and reasons for their differential impact. The results of the present study could be implied in toxicological research for designing strategies to reduce adverse impact of AgNPs and AgNO3 on crop plants

    Acquisition and Homeostasis of Iron in Higher Plants and Their Probable Role in Abiotic Stress Tolerance

    No full text
    Iron (Fe) is a micronutrient that plays an important role in agriculture worldwide because plants require a small amount of iron for its growth and development. All major functions in a plant's life from chlorophyll biosynthesis to energy transfer are performed by Fe (Brumbarova et al., 2008; Gill and Tuteja, 2011). Iron also acts as a major constituent of many plant proteins and enzymes. The acquisition of Fe in plants occurs through two strategies, i.e., strategy I and strategy II (Marschner and Römheld, 1994). Under various stress conditions, Nramp and the YSL gene families help in translocation of Fe, which further acts as a mineral regulatory element and defends plants against stresses. Iron plays an irreplaceable role in alleviating stress imposed by salinity, drought, and heavy metal stress. This is because it activates plant enzymatic antioxidants like catalase (CAT), peroxidase, and an isoform of superoxide dismutase (SOD) that act as a scavenger of reactive oxygen species (ROS) (Hellin et al., 1995). In addition to this, their deficiency as well as their excess amount can disturb the homeostasis of a plant's cell and result in declining of photosynthetic rate, respiration, and increased accumulation of Na+ and Ca− ions which culminate in an excessive formation of ROS. The short-range order hydrated Fe oxides and organic functional groups show affinities for metal ions. Iron plaque biofilm matrices could sequester a large amount of metals at the soil–root interface. Hence, it has attracted the attention of plant physiologists and agricultural scientists who are discovering more exciting and hidden applications of Fe and its potential in the development of bio-factories. This review looks into the recent progress made in putting forward the role of Fe in plant growth, development, and acclimation under major abiotic stresses, i.e., salinity, drought, and heavy metals

    Silicon crosstalk with reactive oxygen species, phytohormones and other signaling molecules

    No full text
    Exogenous applications of silicon (Si) can initiate cellular defence pathways to enhance plant resistance to abiotic and biotic stresses. Plant Si accumulation is regulated by several transporters of silicic acid (e.g. Lsi1, Lsi2, and Lsi6), but the precise mechanisms involved in overall Si transport and its beneficial effects remains unclear. In stressed plants, the accumulation of Si leads to a defence mechanism involving the formation of amorphous or hydrated silicic acid caused by their polymerization and interaction with other organic substances. Silicon also regulates plant ionic homeostasis, which involves the nutrient acquisition, availability, and replenishment in the soil through biogeochemical cycles. Furthermore, Si is implicated in modulating ethylene-dependent and jasmonate pathways, as well as other phytohormones, particularly under stress conditions. Crosstalk between Si and phytohormones could lead to improvements in Si-mediated crop growth, especially when plants are exposed to stress. The integration of Si with reactive oxygen species (ROS) metabolism appears to be a part of the signaling cascade that regulates plant phytohormone homeostasis, as well as morphological, biochemical, and molecular responses. This review aims to provide an update on Si interplays with ROS, phytohormones, and other signaling molecules that regulate plant development under stress conditions
    corecore